Synthesis of Anhydro-2,3,5-triphenyl-4-hydroxyselenazolium Hydroxide, a Mesoionic Selenium Heterocycle

By MICHAEL P. CAVA* and LYDIA E. SARIS

(Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19174)

Summary The synthesis of anhydro-2,3,5-triphenyl-4hydroxyselenazolium hydroxide (4) is reported which is the first example of a mesoionic selenium heterocycle.

ALTHOUGH a variety of mesoionic sulphur-containing heterocycles are known,¹ no analogous selenium compounds have been reported. We now report the synthesis and some properties of anhydro-2,3,5-triphenyl-4-hydroxyselenazolium hydroxide (4), the first mesoionic heterocycle containing an endocyclic selenium atom.

Treatment of N-phenylbenzimidoyl chloride (1) with sodium hydrogen selenide in EtOH—dioxan gave (89%) red-orange needles (benzene-hexane) of selenobenzanilide (2),† m.p. 113—115 °C; λ_{max} (EtOH) 247 (log ϵ 4·18), 458 nm (2·50); ν_{max} (KBr) 1625, 1500, 1400, and 1085 cm⁻¹. Reaction of (2) with α -bromophenylacetic acid and triethylamine in benzene gave the α -seleno acid (3), which was directly cyclized in the cold by 1:1 Et₃N-Ac₂O to give (88%) magenta needles (EtOH-light petroleum) of the selenazolone (4), m.p. 232 °C; λ_{max} (EtOH) 484 nm (log ϵ 4·00); ν_{max} (KBr) 1575 cm⁻¹. These data show a bathochromic shift in the visible maximum and the carbonyl absorption band of (4) compared with the values (453 nm and 1620 cm⁻¹, respectively) reported for the corresponding mesoionic thiazolone (5).²

(1) (3) MeO Ph-C-NH-Ph Se MeC (2)Ph (4) X = Se (6) X = Se (5) X = S(7) X = S MeO₂C CO₂Me MeO. Ph Ph MeO (9)

(8)

† Satisfactory elemental analyses and mass spectra were obtained for compounds (2) and (4).

The selenazolone (4) is surprisingly unreactive as a 1,3-dipole, the addition of dimethyl acetylenedicarboxylate (absence of light) requiring about one week in refluxing benzene. During this time, the primary adduct (6) undergoes spontaneous elimination of elemental selenium (ca. 90% recovery of amorphous Se) with the formation of the known³ pyridone diester (8), m.p. 220-221 °C (65% after chromatography). In contrast, the corresponding dipolar addition

reaction of the analogous thiazolone (5) is complete after refluxing overnight; the primary adduct (7) does not lose the sulphur bridge, but eliminates phenyl isocyanate with the exclusive formation (90% isolated) of the thiophen diester (9).4

We thank the National Science Foundation for support.

(Received, 12th May 1975; Com. 541.)

¹ For some examples see: M. Ohta and H. Kato in 'Non-benzenoid Aromatics,' ed. J. P. Snyder, Academic Press, New York, 1969, ch. 4, p. 117; H. Gotthardt and B. Christl, Tetrahedron Letters, 1968, 4743; W. Baker and W. D. Ollis, Quart. Rev., 1957, 11, 15. ²Z. Takayanagi, H. Kato, and M. Ohta, Bull. Chem. Soc. Japan, 1967, 40, 2930; M. Ohta, H. Chasho, C. Shin, and K. Ichimura,

J. Chem. Soc. Japan, 1964, 85, 440.
⁸ K. T. Potts, J. Baum, and E. Houghton, J. Org. Chem., 1974, 39, 3631.
⁴ K. T. Potts, E. Houghton, and U. P. Singh, J. Org. Chem., 1974, 39, 3627.